

What <u>TO</u> Focus on When Selecting Silage Genetics

- 1. Basic Agronomic Traits (Yield Stability) Heat units to silk and maturity, technology traits, stress emergence, drought tolerance, disease resistance (e.g. NLB, ear molds)
- 2. Dry Matter Yield Influenced by plant height at the ear (biomass yield) and starch (grain) content
- 3. Starch Content
 - Most energy dense component of the plant
 - Influenced heavily by harvest maturity of the kernel
 - Short statured plants can be high in starch but may lack overall biomass (tonnage).

What <u>NOT</u> To Focus on When Selecting Silage Genetics (but certainly important when feeding the silage)

1. Fiber Digestibility

Not a selection trait - little genetic variation between non-BMR's

- Why BMR hybrids have been commercialized
- Wet conditions during vegetative growth equals lower fiber digestion
 Growing environment is 3-times more influential than genetics
- C C

2. Starch Digestibility

□ No significant differences among hybrids <u>at silage maturity</u>

□ Not a selection trait but important to know for feeding silage

 Highly influenced by growing environment, kernel maturity, degree of kernel processing and time in fermented storage

Harvest 7	liming	In	fluen	ces `	Yield	
You have (s	ome) control ove	er plantir	ng date and h	arvest timing		
	Range and Relative Impact (%) of Management Decisions on Silage Yield and Quality					
Dr. Joe Lauer	Factor	N Trials	Yield T/A	Milk per Ton Lb milk/T	Milk per Acre Lb milk/A	
UW Corn Extension Specialist	Hybrid Top v. Bottom Entry	204	3.1 (39%)	477 (14%)	11,500 (43%)	
Line drivers of <u>Corn</u> Silago Viold aro:	Plant density 22K v. 40K	31	1.2 (14%)	-130 (-4%)	2900 (10%)	
<u>slidge field</u> die. #1 harvest timing	Planting date April 24 v. June 16	28	2.2 (27%)	110 (3%)	7800 (30%)	
#2 hybrid genetics	Row Spacing	13	0 (0%)	8 (0%)	70 (0%)	
#3 planting date	Rotation CC v. CS v. CSW		?	?	?	
	Soil Fertility		20 to 50% change			
Harvest timing is #1 because grain typically	Pest Control Poor v. Good	()	"Do for silage what you do for grain." Economic thresholds tend to be lower.			
makes 50% of the yield	Harvest timing Wet (R3) y, Dry (R5,5)	5	4.4 (40%)	490 (15%)	12,000 (38%)	
(and 65% of the energy)	Source: Dr. Joe Lauer, UW Sta	te Corn Extensio	on Specialist, Pioneer Cor Lauer © 1994-2012 http://corn.agronomy.w	n Silage presentation Janua risc.edu	ry 31, 2012, Johnston, Iowa Lauer, 1995-2007 (unpublished	

Sila	age Proc	essing P	ast 10 Y	RS
	(CVAS	Data, 2006 -	2016)	
Crop Year	Number	Average	Percent Optimum	Percent Poor
2006	97	52.8	8.2	43.3
2007	272	52.3	9.2	37.9
2008	250	54.6	5.2	34.8
2009	244	51.1	6.1	48.0
2010	373	51.4	5.9	43.4
2011	726	55.5	12.3	33.1
2012	871	60.8	14.8	19.9
2013	2658	64.6	26.2	22.1
2014	4634	62.2	25.8	10.4
2015	3231	61.1	24.2	17.5
2016	3598	63.5	30.8	11.5

Silage Kernels (pre-blacklayer) vs. Dry Corn (post blacklayer)

Starch Digestibility of Corn - Silage and Grain

Jeffrey L. Firkins¹ Department of Animal Sciences The Ohio State University

Presented at the Tri-State Nutrition Conference April 25, 2006 Conclusions

Taken together with other studies described, I conclude that there should be an optimum NSC availability in the rumen that is consistent with efficient rumen microbial metabolism. Clearly, the amount of RDS depends on the maturity, DM percentage, and processing of com silage. Some silages might be lower in RDS than others, so we still need to develop or improve methodology to predict starch availability in silages in a systematic laboratory analysis that will help nutrition advisors to better account for varying RDS. Until more work is done. the Wisconsin index (Ferreira and Mertens, 2005) for particle size should be considered to predict total tract starch digestibility. Vitreousness of com grain in silage seems to be of relatively little value. In contrast, vitreousness or perhaps gelatinization of dry corn grain should be considered, particularly to help users know when to grind corn more finely. Using these considerations for coarse adjustment of rations, the amount of RDS can be fine-tuned with more slowly available byproducts or increased moderately with small amounts of sugars according to individual herd or group needs. As ration balancing and feeding systems continue to improve in reliability and repeatability, nutrition advisors will still have to use their knowledge of nutrition to continue to keep pace with other feeding management practices.

Ruminal Starch Digestion Increases Over Time In Fermented Storage Due to Increased Prolamin (zein) Solubility

J. Dairy Sci. 100:9048-9051 https://doi.org/10.3168i/ds.2017-12943 6 American Dairy Science According 7, 2017

Short communication: Influence of various proteolytic sources during fermentation of reconstituted corn grain silages

D. Junges, * C. Morais, * L. H. F. Spoto, P. S. Santos, ‡ A. T. Adesogan, § L. G. Nussio, * and J. L. P. Danieł # * Teoderse et Ans too kodzy, i loo an Namon, russenik vr 350 reau, Luc & Queez Celege et Agnoutes, traccade, Brazi,

ABSTRACT

The objective of this study was to determine the contribution of corn kernel enzymes, bacteria, fungi, and fermentation end-products (main acids and ethanol) to protein solubilization during fermentation of reconstituted corn grain silage. Flint corn kernels were ground (5-mm sieve), rehydrated to 32% of moisture, and treated with no additives (control), gamma irradiation (32 kGy), gamma irradiation + fermentation end-products (1% of lactic acid, 0.3% of acetic acid, and 0.7% of ethanol, as fed), and natamycin (1% as fed). Treated grains were ensiled in nylon-polyethylene bags and stored for 90 d. Protein solubilization was calculated for each treatment and the contributions of proteolytic sources were determined. Bacterial activity was the main contributor to proteolysis (60%) followed by corn kernel enzymes (30%), whereas fungi and fermentation end-products had only minor contributions (~5% each).

Enogen for Feed?

- Repurpose of this GMO corn
 - Due to large investment, poor demand from ethanol
 - Stewarded product needed to be used for ethanol or fed to animals
- Research at UNL feeding <u>dry cracked</u> <u>grain</u> to <u>feedlot steers</u> showed "some" promise in improving feed efficiency
- Syngenta marketing ran with this data and additionally promoted for corn silage

Comments by Dr. Fred Owens

- Direct infusion of amylase into the small intestine failed to increase total tract starch digestion by steers in Colorado State trials by Rumpler and Johnson about 25 years ago.
- That also supports the concept that enzyme activity within the ruminant digestive tract typically is sufficiently high to fully digest all available starch.
- Instead, coarseness of particles within dry rolled grain, particularly when compounded by high grain vitreousness, limits accessibility of starch for attack by microbial or animal amylases within the digestive tract.

Beef Cattle Trial Summary

	Inclusion Rate (%DM)	Protein Source	DOF	ADG	DMI	F:G Ratio	нсw	Marbling
ISU 2014	Dry Corn 10%	WDGS	131	NSD*	NSD*	NSD*	NSD*	NSD*
ISU 2014	Dry Corn 20%	WDGS	131	NSD*	NSD*	NSD*	NSD*	NSD*
UNL 2018	Dry Corn 68%	MDSG	172	NSD*	NSD*	NSD*	NSD*	NSD*
UNL 2018	Dry Corn 34%	MDSG	172	NSD*	NSD*	NSD*	NSD*	NSD*
UNL 2018	Dry Corn 58%	Sweet Bran	172	+ 0.24 #/d	NSD*	+ .033 G:F	NSD*	NSD*
UNL 2018	Dry Corn 64%	WDGS	148-181	+ 0.24 #/d	NSD*	+ .020 G:F	+ 28.6 #	NSD*
UNL 2018	Dry Corn 32%	WDGS	148-181	+ 0.22 #/d	NSD*	+ .024 G:F	+ 26.4 #	NSD*
KSU 2018	Corn Silage 8%	Sweet Bran	138-166	NSD*	- 0.39 #/d	+ .009 G:F	NSD*	N/A
KSU 2018	Flaked Corn 74.5%	Sweet Bran	138-166	NSD*	NSD*	005 G:F	+ 11.3#	N/A
KSU 2019	Corn Silage 40%	Hay/Supplement	91	+ 0.18 #/d	NSD*	+ .005 G:F	NSD***	N/A
KSU 2019	Dry Corn 38.5%	Hay/Supplement	91	NSD*	NSD*	NSD*	NSD***	N/A
ISD* = No Significant Differences (p>.05)								

NSD*** = No Significant Differences (p>.05) ***study used live weight instead of HCW

- Results are very inconsistent
- Results varied with protein source, type of corn, and inclusion rate of Enogen corn
 - Most results are either not significant or show slight improvements in outcome

 Very similar to data in feeding amylase directly

Late-Season Plant Health Can Also Influence NDFD (and Plant DM)

Plants that develop late-season plant diseases drop significantly in fiber digestibility. In the example below, both plants **equal in NDFD on Sept 19** but NLB infesting the susceptible hybrid **significantly lowered** its NDFD, compared to the hybrid which maintained plant health

Hybrid	Detail	Date Sampled	NDFD30
X	healthy stalks – field A	9/ <mark>19</mark> /2017	61.7
Х	healthy stalks – field A	9/ <mark>27</mark> /2017	60.9 🧖
Y	diseased stalks – field B	9/ <mark>19</mark> /2017	59.3
Y	diseased stalks – field B	9/ <mark>28</mark> /2017	46.4

Set Realistic BMR Expectations vs. standard corn silage hybrids Potential for more agronomic risk (standability, need for fungicides etc.) Slightly reduced yields

- (5-15% depending upon growing conditions)
- Extra inventory needed due to slightly reduced yields and higher feed intake of BMR silage
- **Biggest value is to transition and early lactation cows** to drive intakes (1 lb extra dry matter intake equates to 1.5 lbs more milk/cow/day)
- First time BMR growers should discuss their decision to plant BMR with their nutritionist

What About Leafy Hybrids

(extra leaves above the ear, shades the ear leaf responsible for driving starch deposition)

1 Selected as seen into	
 Anotean Day Socies Association, 2005. 	
Comparison of Feeding Corn Silages I or Conventional Corn Hybrids to Lacta	from Leafy sting Dairy Cows ¹
 D. Namelch ¹⁷ J. G. Level ¹ D. G. Johnson, J. M. I. Fao Toperanet of Joint Science. Discord of Himselin, 20 Your Mil- richae Central Teasech and Catech Center. Discord of Versions 2020 Applied on Research Science, 3: Pail Unit 2020. 	Res," and K. G. Jazzy" 1945 Ware emitidad
LESTRACT These sets letting cyboard 100°04. Nitrogen 100°14/0, and 100°070 DUTANE wave composite for shift and quality tests, and latest up politerature work generate the and their by Holizon account, the time ware matter with a set work of a set of the original shift of the prior function of a set of the set of shift of the prior function of a set of the set of work 10.4 million of the set of the set of a set of the set of the set of the set of the set of set of the set of the set of the set of the set of set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of set of the set of set of the set of the set of the set of the se	sections is increase. Then is researed filling to the single data of the single data with the section of the single data with the section of the single data with the single dat
(10) 240 year (and, superive): 102-491 and (2) sone lifetim come were placed on a 210-6 heating- trad after a 21-6 constants dist. Grew was bioled by caloring 460 and resulting assigned within block in one of those delargi to attention, sortening, aqueen- mentally 40° day name beam ours along. Rike with,	and allow, your Kashin et al., 1990; Bull et al., 2000 Baland et al., 2000; Thomas et al., 2000; Carkes et al. 2000; W. Da available ment inlags fubbril types. In lensest anishede statist is the only stress fubbril states an empowement in milk production (Ohman Mars. 1990; Balace al., 2000; Balandara et al., 2000; Bala

Although small differences in nutrient content and digestibility existed among corn silage hybrids, inclusion of these leafy hybrids in lactation cow diets at 40% of the dietary dry matter did not have a significant impact on lactation performance of dairy cattle. Source: 2003, University of Minnesota Research – Journal of Dairy Science 86:2932-2939 budy one shart are consoled of cars theorem down for the term space in bandwise budy budy. Let give sub-time by provide its order to the days produce within the sock-one shart yields to the generatory and the days produce within the sock-one shart yields to the generatory and the days the days and the days that the days and the days and

Under the harvest conditions of the Waroarm moly, ulage made from the leafy hybrid d not improve lactation performance. Mancesota researchers give reported no improvement in helphon performance from fixeding a leafy aloge hybrid.

"Under the harvest conditions of the Wisconsin study, silage made from the leafy hybrid did not improve lactation performance. Minnesota researchers also reported no improvement in lactation performance from feeding a leafy silage hybrid. Source: 1999. Dr. Randy Shaver Dairy Nutrition Specialist University of Wisconsin

Sta <u>Sometii</u>	arch and <u>mes</u> be Ir	Fiber D)iges ed by	tibility Car High Cho	n pping			
Table 1. Averag	Table 1. Average nutrient content and production of corn silage harvested							
at low or high levels of height (summarized from 11 studies) ⁴ .								
Increasing chop height from	~7" to 20" Low height	High height	Change	D				
Item	$(6.8 \pm 2.5")$	$(19.3 \pm 2.8")$	(%)	Review of 11 Sc	ientific and			
DM, %	38.1	40.3	6.0	Popular Press a	by Wu and State			
CP, %	7.0	7.1	2.0	nign-chopping b				
ADF, %	24.2	21.8	-10.2	Roth at Penr				
NDF, %	41.6	38.6	-7.4					
Starch, %	30.6	32.4	5.9	Starch is concentrated				
NEL, Mcal/lb	0.71	0.74	4.2					
NDF digestibilit	y, % ² 50.6	54.0	6.7	Fiber Dig increased by 6.	7%			
DM digestibility	$,\%^2$ 78.6	80.6	2.5					
Yield, ton/ac, DI	M 8.1	7.5	-7.4	These trials showed that wh	ole plant yield			
Milk equivalent	,			decreased about 0.4 as fed to increase in chop height (0.)	ons for every 4" L7 ton of DM)			
lb/ton	3014	3162	5.2	Pioneer data suggests clo	ser to 1 ton of			
lb/ac	20990	20610	-1.7	heightbut keep in mind t	hat the silage			
Source: http://www.das.ps	u.edu/user/publications/pdf/das03	3-72.pdf		yield loss is indigestible fiber plant internodesnot leave (more digestible) stalk i	from the lower s, ear or upper nternodes.			

What Happens with Frozen Corn Silage

- You lose epiphytic LAB's (less so with commercial inoculant strains.
- Optimum growth rate for LAB fermentation is 90F. As temperatures decrease from optimum, fermentation will proceed but more slowly until temperature reaches about 32F when fermentation ceases.
- · Yeast will survive freezing
 - Cellular damage allows for fast yeast growth when silage warms up
- · Expect reduced stability because of yeast survival
- OK to feed this silage but recognize the differences compared to normally fermented silage:
 - Feeds like green chop
 - Higher sugar content
 - No change in starch digestibility due to lack of microbial activity that occurs in normally fermented silage
- When warms up, fermentation proceeds but recognize that lower DM, densely compacted, larger volume silage piles/bunkers will warm up at a slower rate. As silage warms and slowly ferments:
 - Sugar levels are reduced
 - Fermentation acids are increased
 - If inoculated with a buchneri-containing inoculant, stability in feed-bunk should improve
 - No known studies on how much ruminal starch digestibility might improve given the alteration in microbial activity compared to normally fermented silage. Best to conduct 7-hour ruminal starch digestibility analysis.

Conclusion: Managing the Manageable What Is Under <u>Your</u> Control

Silage Yield

- Hybrid Genetics
- Planting Date
- Planting Population
- Kernel Maturity at Harvest
- Chop Height (concentrates starch)

Conclusion: Managing the Manageable What Is Under <u>Your</u> Control

Silage Yield

- Hybrid Genetics
- Planting Date
- Planting Population
- Kernel Maturity at Harvest
- Chop Height (concentrates starch)

Silage Starch Content

- Hybrid Genetics
- Planting Date
- Planting Population
- Kernel Maturity at Harvest
- Chop Height (concentrates starch)

Conclusion: Managing the Manageable What Is Under Your Control

Silage Yield

- Hybrid Genetics
- Planting Date
- Planting Population
- Kernel Maturity at Harvest
- Chop Height (concentrates starch)

Silage Starch Content

- Hybrid Genetics
- Planting Date
- Planting Population
- Kernel Maturity at Harvest
- Chop Height (concentrates starch)

Fiber Digestibility

- Hybrid Genetics BMR
- Harvest Timing / Fungicides
- Chop Height (lower internodes less digestible)

Conclusion: Managing the Manageable What Is Under Your Control Silage Yield Fiber Digestibility **Hybrid Genetics**

- Planting Date
- Planting Population
- Kernel Maturity at Harvest
- Chop Height (concentrates starch)

Silage Starch Content

- Hybrid Genetics
- Planting Date
- Planting Population
- Kernel Maturity at Harvest
- Chop Height (concentrates starch)

- Hybrid Genetics BMR
- Harvest Timing / Fungicides
- **Chop Height** (lower internodes less digestible)

Silage Starch Digestibility

- Degree of Kernel Processing
- Amount of Time in Fermented Storage

Conclusion: Managing the Manageable What Is Under Your Control

Silage Yield

- Hybrid Genetics
- Planting Date
- Planting Population
- Kernel Maturity at Harvest
- Chop Height (concentrates starch)

Silage Starch Content

- Hybrid Genetics
- Planting Date
- Planting Population
- Kernel Maturity at Harvest
- Chop Height (concentrates starch)

Fiber Digestibility

- Hybrid Genetics BMR
- Harvest Timing / Fungicides
- **Chop Height** (lower internodes less digestible)

Silage Starch Digestibility

- Degree of Kernel Processing
- Amount of Time in Fermented Storage

Storage and Feeding

- Compaction/Face Management
- Inoculation

